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CLASSIFICATION OF THE INVARIANT SOLUTIONS TO THE EQUATIONS FOR
THE TWO-DIMENSIONAL TRANSIENT-STATE FLOW OF A GAS

N. Kh. Ibragimov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Figiki, Vol, 7, No. 4, pp. 19-22, 1968

Here one considers all invariant solutions to the sys-

tem of equations for two-dimensional gas dynamics:
ov
G+ (V) v+ - grad p= 0,

3
a—?+(v-grad p)+pdivv=0

%%-[— (v-grad p) + A divv =0,

(A=A(p,P)E—P%§§)' @

Here p is pressure, p is density, S is entropy, and
v = v(x,y) is the velocity vector, whose components
are u and v; it is assumed that 8S/8P = 0. Two cases
will be considered,

Case A: A(p, p) an arbitrary function.

Case B: A =vp, a polytropic gas with v = constant.

The principal group of transformations allowed by
(1) has been given [1], and for case A the basis of the
corresponding Lie algebra consists of the operators

a 0 17} 0 a
N=gr Xa=tgtg, X=tg+5
a3 174 a é
Xo=gp Xe=tgytog+yg,
a a 7] a a
Xe=g;, Xi=yg —og trog—tg (2

while in case B we add to these the operators

a o s I
Xo=tgr—ugy —vg + 205

a I/}
X9=P'(,;+Pg;- (3)
Table 1
U X48x,  (0=0,1)] 8|Xi 4 Xat5Xs
2] Xo-+ 8%y (6=0,1}| 9| Xs+ Xs- 8%,
3 X1+X4+6Xg(6=0, 1) 10 GX5+BX7+X3+6X9
4 X2+X5+6X9(6=0,1) 11 Xl—Xe+d.X7+Xs+6X9
5| Xe+aX,+ 06X, 12 | Xy
6 | Xq-4 68X, 13 | X5+ 68X, (8=0, 1)
T X4+ X2+68% .

For v = 2 we add to (2) and (3) the operator

a a a a
f ] 8
+y—to) gy —dpg— 2o g - (4)

The basic group for case A is denoted by Gy, while
for case B it is denoted by Gy for arbitrary v and by
Gy for vy =2,

Table 1 gives the optimal system of one-parameter
subgroups of group Gy.

The optimal system of one-parameter subgroups of
group G; consists of operators 1-7 of Table 1 for 6 =
= 0 with operator X; + @X;, while the same for group

Gy, consists of operators 1-12 of Table 1 and the op-
erators

14, X1+ Xo - X7+ 0Xy + Xuy,

15. X1 -+ aXe -+ BX: + 0Xo-f Xuy o (5)
Table 2
1| X, X:| 6 |aXg+ Xs | 10 X+ Xg4aXs
2 Xo| 7 | Xq,Xe 11 aXy+BXs - Xs
3 aXs+ X7 | 8| X,, X 12 X4
41 X5, Xgi 9 Xs+Xa] 13 X+ X
5 Xo 4 0Xs 14 | Xod-X5, 04Xy -+ BXy | Xa

The o and 8 of the last operator satisfy 0 < o < 2
and 8 = 0 for o = 0.

Table 2 gives the optimal system of two-parameter subgroups of
group Gq; Table 4 does the same for group Gy, and subgroups 1-40 of
Tables 3 and 4 do the same for group Gyg.

The form of the invariant solutions of rank unity is
as follows. These solutions are derived from the two-
parameter subgroups. U, V, P, and R are dependent
on a single argument A, whose expressions in terms
of t, x, and y vary with the subgroup and are given
below. The necessary condition for an invariant solu-
tion is not obeyed for subgroups in which operator Xy
is one of the forming elements; moreover, the X3 term
in all subgroups affects only p and p, and this effect is
easily allowed for, so Xy will not be considered. Also,
I do not consider subgroups in which as one of the form-
ing elements we have X;, X,, X3, X,, or X;, since
these give the stationary and one-dimensional case.
For instance, the invariant solution for H = (X;) takes
the form

wu="U({t, z), 27:%+V(t,x),

; 1
p=-P@ 2, po=-R({1).

“Ia

Then the H of system (1) is
Vi+ UV, +tW=0, U+ UU, 4+ R'"WP, =0,
Rt+U1{"C+RU\:O1 Pt+UP\ __'_A/LT\ZO

(4 =— 1 )

We have a system of equations for one-dimensional
motion for U, P, and R, while V is found from

V, 4+ UV, -+t =0

with a known funection U(t, X), so we have to deal with
the solution of equations for one-dimensional motion.

For the subgroups of Table 2 we get invariant solutions of the form

T.our = U, wu ==V, p: P, p=R, Ar=1rit,

®



12 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

Table 3
1 Xy, -+ Xy Xg 4 Xy
2 _Xl—aXG—HSX + X0 0L a<2
3| X, X;, Xy + aXg— X7 — aXs+ BXo X1 (1=£0)
4 X1+ aXs 4 BXs L 8Xe - Xig— Xz
5 X - X5 - X, X1~OLX24—BX3——X7*X10
6 X—;tSX X+ aXe -+ BXg -+ Xyo (0~<:x<2)
7 XSJ—£X7 Xs + 6x9,X1—aXe+BX-4 nXo + KXo 0<a<?2)
Here r and ¢ are polar coordinates in the (x, y) plane, while uy and For Table 3 we have
u¢ are the projections of the velocity on the axes of the polar coordi- S0
nates, 3. u=1_—}—t?(U_tV+M2)’
lz—y (@ +t)y— Bz
Y v=prm0a atVlU, v="m— % +V, p=P 8 (1)
2+ ot — + B2+ ot ! e
+ ’ * g v=s+ty1p [V 4 tU — At @+ 2)1,
p=R, N=t. P Py

PEATER . PEIES
In Table 4 we need consider only subgroups 9-14: .

(tz —y) et W
9. u, =rfy, U, = 8y, p = p,p =R, A= I+ ’
- U—tV 40238 Bo(Y)
= (BB - —
A=t for p=£0, 4o u= e 5
u,=t1U, u,=11, p=~P, p=1R, ' ' R P

P=TIn P=agyap:
A=r for B=0, .
V 4t — At (2 - 2) + 1382 +ti39(t)

0. u=1+ VyU, v=7VyV, p=~P, - p =yIR, v==2 1412 » 20
A=1/2 1 —azy? _ tw—y -0 |- 1B X
ot et A= i+ +%6(,t), »

. w=(z—y) U, v=2g-+ (z—ylV} p=P, 0(f)— o arc tg .

p = (z—y)* R h=1, 6. To avoid complicating the formulas we consider the case o =

. =B=90
12. u, =r U, u¢=rV, p=~P, p=r2R, L= re,
no LU yoo.__r R
13. u, = 10U, w,=1rV, p=2P, p=r2R, “ETrE T Tr e %eT T PEaEwp PTigen
A=t4+o-+pInr, x__;_‘
CViERE
o JO/8 /8 — /8 0 — o §2,m2 .
e u, =080, g eV, p=P p =i R, 7. Here also we assume o/ = B = 0:
A= r"%%® for 2=£0, rt + r7 rv P
Ur =T 12 ite: %~ 1te? p= 1T ER)E
w, =rt2U, wuy=r"V, p=2P, p=1t¥2R, + * (
A A= 8l
=7 = n——.
A=¢-+aln rfor § =0, =7 ¢ Vite
Table 4
1| X1+ X, 0X1 4 X9 26 Xz aXs+BXe
2 aXy+ Xe+BX:— Xs | 27 Xs+oX74- BXst 68X
3| Xo-+Xg, Xg+ Xa 28 X,
4 X1+CtX4+BX5 Xz, X1+dX4+BX5+6X9
5 Xy -+ BXg - X5 (=0, 1) | 29 =0, 1
6 aX, +BXs-+ Xs | 30 §=0,1
7| Xz X5, aX, —{<X4+BX3—|—§X9 31 0Xy-+ X5+ BXe (3=0, 1)
, 1) Xs-+ XgtaXy (2=0,1)

8 Xs+ BX 32 Xg-LaXy (=0, 1)
91 X7+ aXoe, B8Xs 4 X8+6X9 33 Xa -+ 0 Xy (a=0, 1)
10 X1+X4, '2X5+X3+U.Xg 34 X4+C!X5—{—X6+8X9
1| Xo+-Xs, -Xo+ X+ aX, 35 A5+ Xs +aX,
12 | Xo4-dXy, X1— X+ Xz - BXq | 36 Xs+ aXy
13 X1+X7+GX9, BXI_X6+ 37 Xs—l—Xs—I—ng

—{— s+ 86Xy | 38 aXe + X BXB
14 Xe+(1X7—LBX9, 6X7+X3+8X9 39 X1—Xe-—|—Xg—f—OtX9
15 | X,, Xy Xy 40 Xy
16 Xz 4 X5 41 | X, X3+ 9
17 Xe+aX; 42 | Xo+afXs+ X+ BXe (R3=0, 1)
18 X 43 Xs+ Xe+ Xy
19 X1+X7 44 X4+CLX9 (OC:O, 1)
20 Xa+ Xs 45 X3+ Xg+aX,
21 Xy 4 X 46 aXs-+ Xg 4 BXy (=0, 1)
22 aXe - BX7 + Xs 47 Xs + aX; | Xs+ BXo
23 X;— Xg+ 0 X7+ Xg 48 aXs - Xz BX,
24 Xl, Xs+0tX9 49 X9
25 Xz—{—Xa—f—Cle 50 X5+ Xg, CLX4+BX5—|—X5
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The form of the invariant solutions of second rank is also found
without difficulty,

As an example we consider the invariant solution correspending to
the subgroup H == (X3, X1+ X1o). This has the form

— rt +E_ h___V; &/ P
ur—1+tz r uq,— r p:I—‘—}—ti , pz—(i-—m—«'

,
viEE ©

In this case y =2, and the equations of gas dynamics may be in-
terpreted as those of shallow water, without loss of generality we may
consider the density of the water and the acceleration due to gravity
as unity; then p = p%/2, and p is the height of the water above the even
base, Consider the motion of the water over a dry base. We substitute
(6) into (1), as written in polar coordinates, and find one of the so-
lutions as

U=40, V=0, e == const .,

R =1 (a®-}A%), A<aq,

This describes the flow of a hill of water; consider now the motion
over a dry even place of a mass of water that at t = 0 has the form
o =15 (a?~r?), r << @ and that is at rest. The solution is

rt . r2
LETEE T Y%=0 sz(”—m)‘

The boundary (p = 0) moves in accordance with r =a VT 4 ¢2,
while the height of the vertex (r = 0) decreases in accordance with
the law [d%/(1 + 1%)]/2. The velocity remains bounded, uy < q. In
this solution the velocity is a linear function of the coordinates, so
it is one of the class of solutions found previously by Ovsyannikov [2].

I am indebted to L, V. Ovsyannikov for useful ad-
vice on this work,
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